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• Introduction to machine learning 
– Meaning of ordinary learning and its translation to machine learning
– Classes of problems suitable for machine learning
– Classification 

• Regression 
– Linear  regression
– Logistic regression 
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Agenda



• The goal of machine learning is to predict a future based on what is learned about the past or about similar 
situations.

• What does it mean to learn?

• Learning invokes the notion of cumulative experiences that allow one to recognize a situation or be able to 
solve/handle a similar problem to one that has been seen in the past.

• The ability to generalize a problem-solving skill is what is generally meant by learning.

• Generalization is central to the concept of learning, and it is this model of learning that we attempt to build into 
our machines.

• Machine Learning is a framework for induction or inference of general conclusions based on particular 
examples or instances.
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Machine Learning
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• The basic setup for machine learning is illustrated
on the right.

• This could be the setup Netflix might implement as
an algorithm for predicting the kinds of movies you
might like to watch; they might write a program
that is trained on the movies you have watched in
the past. The data for the program would be the
movies you have watched and rated. The
algorithm’s job is to find a function 𝑓 that will map
a new example to a corresponding prediction.

• The algorithm would then be evaluated (tested) on
sample test data. This is similar to the way you
will be tested in your final exams in any course you
take this semester. If you pass, the assumption is
that you will be able to solve similar problems
your employer throws at you.

General Setup for Supervised Machine Learning



• Machine learning cannot be  used for all types of problems you encounter in life.

• There are classes of problems that machine learning  is  good  at; the problems must be carefully selected.  
Below are a few types of problem classes that machine learning can tackle.

• Regression – simple prediction of  real numbers, for example, a stock price price next week based on what 
it was during the past 7 days.

• Ranking – this is when you try to put a set of things in order of relevance. This is what Google Search 
does; it responds to your query with a list of items ranked according to what the search engine believes is 
closest to you query.

• Binary classification – when you only want  a simple yes or no answer.  You could create an algorithm to 
predict whether students like to eat at Skibo cafe after you perform a survey (this is your training data).

• Multiclass classification – when you have a large basket of fruit (oranges, apples, kiwis and pears), you 
can write an algorithm to sort the fruit, each into its own class.
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Types of Problems Solvable by Machine Learning 



• To be useful in the context of machines, we must formalize the concept of learning 

• At least three things must be defined that would allow one to teach a machine anything:
– One must create a metric (measurement) for performance on a particular problem of interest.
– The performance of an algorithm must be measured on unseen data.
– There should be a relationship between the data the algorithm sees during training time and the data it sees during testing time; 

in the end, we also want the algorithm to be used only for similar but unseen data.

• A good metric to use for gauging the items above is a function called the loss function, ℒ(. , . ) with two 
arguments;

• For variables 𝑦 and '𝑦 in the argument of the loss function, we expect the value of ℒ(𝑦, '𝑦) to measure the 
error.

• For ordinary regression, the loss function is ℒ 𝑦, '𝑦 = 𝑦 − '𝑦 ! = 𝑦 − '𝑦 Eqn. (3.1)
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Formalizing learning 



• In binary classification, the loss function is a simple yes/no or 0/1 situation that can be written as

ℒ 𝑦, '𝑦 = * 0 if y = 'y
1 otherwise

Eqn. (3.2)

• For multiclass classification, we can use a similar loss function to the binary classification case.

• Expected loss, 𝐸 𝑥, 𝑦 , for input and output variables 𝑥 and 𝑦 can be written as 
𝐸 𝑥, 𝑦 ⟶ 𝐷 ℒ 𝑦, 𝑓 𝑥 Eqn. (3.3)

• The expected loss is the average loss for random variables (𝑥, 𝑦) drawn from a sample 𝐷. For a discrete 
probability distribution, the expectation would be written as

𝐸 𝑥, 𝑦 ⟶ 𝐷 ℒ 𝑦, 𝑓 𝑥 = ∑(#,%)∈( 𝐷 𝑥, 𝑦 ℒ 𝑦, 𝑓 𝑥 Eqn. (3.4)

• Note that 𝐷 is a discrete, finite distribution such as 𝑥!, 𝑦) , (𝑥!, 𝑦!)… (𝑥*, 𝑦*) with equal weight  in  
each sample, ⁄1 𝑁, this means the average loss is then 

𝐸 𝑥, 𝑦 ⟶ 𝐷 ℒ 𝑦, 𝑓 𝑥 = ⁄1 𝑁@
+,)

*

ℒ 𝑦+, 𝑓 𝑥+ Eqn. (3.5)
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Loss Functions for Binary and Multiclass Classification 
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• Classifiers can be built  in several ways, depending on the 
problem at hand.  The most popular approaches include:

– Tree-based classifiers
– Rule-based classifiers 
– Support vector networks
– Bayes classifiers
– Neural networks

• We will only have occasion to discuss at some length the 
Bayes classifier in this course. 

• Evaluation of performance of the classification model can 
be on the counts of the test records correctly and incorrectly 
predicted by the model.

Building classifiers 
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• Classification assigns objects to one of 
several predefined categories.  The main 
task is to learn a target function 𝑓 that maps 
each attribute set of 𝑥 to one of predefined 
class labels 𝑦. A classification model can 
serve as an explanatory tool to distinguish 
between objects of different classes.  It can 
also serve as a predictive tool to label 
unknown records.

• Classification techniques are best used for 
predicting or describing data sets with 
binary or nominal categories.

Classification 



• Classifiers evaluated by the number of correct and incorrect predictions often use a confusion matrix for 
computing the accuracy of the model.  

• In a two-class problem, a relevant confusion matrix is illustrated on the next slide.  According to the 
matrix, the number of correct predictions by the model considered in this instance is given by  𝑐)) + 𝑐--
and the number incorrect predictions is 𝑐-) + 𝑐)-.  The accuracy of the model can be defined as

Accuracy =
Number of correct predications
Total number of predictions =

𝑐)) + 𝑐--
𝑐)) + 𝑐)- + 𝑐-) + 𝑐--

• Similarly, the error rate is defined as 

Error rate =
Number of incorrect predications
Total number of predictions =

𝑐-) + 𝑐)-
𝑐)) + 𝑐)- + 𝑐-) + 𝑐--
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Performance evaluation of a classifier by a confusion matrix 



• A confusion matrix for a typical two-class classifier is shown on below as a tabular listing of the possible 
outcomes of the classification of the model.  

• The matrix elements 𝑐./ indicate  the agreement or disagreement  of the predicated and actual class 
category.

11

Confusion matrix for a two-class classifier



• A decision tree model is another way to create an algorithm that a machine can implement;

• There is no best way to finding the optimal decision tree.  The best-known approach uses what is called 
the greedy strategy to grow a tree.

• The greedy strategy makes a series of locally optimal decisions that contribute to partitioning the data.

• The best-known method for the greedy strategy is Hunt’s algorithm, which is recursive and successfully 
partitions the training data into purer subsets.

• If 𝐷0 is the training data set associated with node 𝑇 and the corresponding labels are 𝑦 = 𝑦), 𝑦!, … 𝑦+ , 
then one can implement Hunt’s algorithm with the steps on the next slide.
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Decision Trees



• If all records (data) in 𝐷0 belong to same class 𝑦0, then 𝑇 is a leaf node.

• If 𝐷0 has records (data) that belong to more than one class, then an attribute (feature) test condition is
selected to partition the data into smaller subsets; a child node is created for each outcome of the test
condition, and the data 𝐷0 is distributed to the children based on the outcomes. The process is recursively
applied to each child node.

• One can use the bank lender’s problem to illustrate Hunt’s method.

• We assume the banker has accumulated lots of data similar to what is on the next slide; (s)he wants to use
it to predict default rate of future customers who wish to borrow money from the bank.

• Algorithms like these can lead to red-lining practices, frowned on because they lead to inequities.
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Hunt’s Algorithm for Decision Tree Creation 
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• By casually inspecting the data, one notices that people who own cars do not default. We therefore 
use this as root node.

Bank Data from Customers and Creation of a Decision Tree
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• The data also suggests that we consider 
income for single, divorced people.  
Resulting tree would be as shown on left.

• Hunt’s algorithm works if every 
combination of attributes is present in 
training data and each combination has a 
unique label. If a child node in step 2 is 
empty, then it is declared a node.

• In step 2, if data has identical attribute 
values, then it is not possible to split node 
any further, then the node is declared a leaf.

Decision Tree Addition after First Pass



• It is typically difficult to decide on how to split the training data when using the decision tree model.

• A second issue, once one has made the decision to split the data, is how to stop the splitting procedure.

• One way to handle the issue of splitting the data is by selecting a test condition for dividing the data into 
smaller subsets; an objective measure must be provided for evaluating the “goodness” for each test 
condition.

• Stopping the process can be done by continuing to expand the mode until all data have identical attributes 
or the data belongs to the same class. 
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Problems with Decision Tree Induction 



• There is no a sharp rule on how to split the data or when to stop the decision tree from creating another 
child node. The illustration below shows several equally valid ways.

17

Bank Data Splitting Decision Tree Options
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• Linear regression is one of the simplest algorithms 
that can be used to demonstrate the idea of a 
machine learning algorithm for predicting a range of 
continuous values. A prototypical function for linear 
regression is 

𝑦 = 𝑤𝑥 + 𝑏 Eqn. (3.6).

• The variables  𝑤 and 𝑏 are parameters of the model 
that must be “learned” to produce the most accurate 
predictions of 𝑦 for input 𝑥;

• We are given the sales and advertising budgets for 
several companies in the table (matrix) to the right. 
The columns (features) represent expenditures on 
advertising and number of units sold in a year.

• Our goal is to develop a function that predicts units 
sold; note that rows (observations) represent the 
names of companies.

Linear Regression as a Machine Learning Algorithm



• Assume a nominal predictive model of the form: y= 𝑤 ∗ 𝐴𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑖𝑛𝑔 + 𝐵𝑖𝑎𝑠.

• The variable coefficient  𝑤 is called the “weight” in machine learning; “Advertising” is an independent 
variable called the “feature” in machine learning. ”Bias” is the intercept and is the offset.

• The goal for our model and the resulting algorithm is to learn the values of the variable “𝑤” and the “Bias” 
during training.

• We care most about accuracy, and measure it by a cost function, which permits optimization of the 
weights.

• In linear regression, the best cost function is the mean square error (MSE) or the 𝐿! norm.
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Example: Predicting Sales Units from Advertising Amount



• Linear regression is one of the simplest machine learning algorithms.  In conventional linear algebra, a 
linear function takes input, and manipulates it in some fashion to generate an output. For input 𝑥., the 
function may generate output 𝑦..  Thus,  𝑦. = 𝑓(𝑥.).  If 𝑓(𝑥.) is of the form 

𝑓 𝑥. = 𝑤𝑥. + 𝑏 Eqn. 3.7 ,
where 𝑤 and 𝑏 are parameters (constants) of the function, the function is said to be linear.

• Such functions can have multiple input variables (features), 𝑥., corresponding to outputs, 𝑦.. The task of 
machine learning is as follows:  given the input and output data in the table below, find a  function 
(model) that can predict outputs for any future input data that the machine has not seen, but is similar in 
kind to the data it was trained on.
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Linear regression in machine learning



• The usual linear algebra problem is to calculate 𝑦., given 𝑥., with a known equation.  In machine 
learning, the equation is not known; it must be found from the data, while making sure one uses the most 
optimal parameters (constants) in the equation.  If one assumes a linear model, then the job of training is 
to find the most optimal parameters (constants) 𝑤 and 𝑏 in  Eqn. (3.7).  

• The problem then can be framed as that of minimizing the deviation (error) of  predicted output by the 
assumed model from the true value of the output.  We write this as

𝐶 𝑤, 𝑏 =
1
𝑁
@
.,)

*

𝑦. − 𝑤𝑥. + 𝑏 ! Eqn. (3.8)

• A one-time error, 𝑒 = 𝑦. − (𝑤𝑥. + 𝑏), for a data pair 𝑥., 𝑦. is called a loss function, but the average of 
the squared sum is called the cost function.

• The most optimal values of 𝑤 and 𝑏 should lead to a minimum of the cost function, which is the goal.

21

The machine learning problem
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• The error in Eqn. (11.2) is squared, which means 
it is a convex function.  Convex functions always 
have a minimum with respect to relevant 
parameters.  With two parameters to optimize, 
the method of gradient descent turns out to be a 
reasonable approach to take for locating the 
minimum, iteratively.

• An accurate plot of the cost function, 𝐶(𝑤, 𝑏), 
would be a  three-dimensional plot. We illustrate 
the qualitative  form of the graphic on the right.  
From this, it is evident that to find the minimum, 
one must  search for a coordinate point  (𝑤, 𝑏)
that minimizes 𝐶 𝑤, 𝑏 . This is best done 
through gradient descent.

Minimization of cost function 



• On the paraboloid cost function graphic in the previous slide, one must determine which way to go on the 
“hill” (up or down) toward the minimum, and how big a step to take when we decide on which direction 
to move. Once one determines the gradient at position 1 on the paraboloid graphic of the previous slide, 
one can take fairly large steps down the gradient.  At position 2, one computes a slope that is much 
smaller than at position 1, there is therefore a need to reduce the step size  so that one does not miss the 
minimum and wind up on the other side of the valley.

• From our cost function of

𝐶 𝑤, 𝑏 = )
*
∑.,)* 𝑦. − 𝑤𝑥. + 𝑏 ! Eqn. (3.9),

• The gradient is found in the manner indicated below, where the chain rule of differentiation has been 
invoked. 

𝐶! 𝑤, 𝑏 =

𝜕𝐶
𝜕𝑤

𝜕𝐶
𝜕𝑏

=

−
2
𝑁
*
"#$

%

𝑥" 𝑦" − 𝑤𝑥" + 𝑏

−
2
𝑁*
"#$

&

𝑦" − 𝑤𝑥" + 𝑏

Eqn. (3.10)
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Gradient descent 



• In gradient descent, one must pick a step-size by which to move.  This is the learning rate.  Beginning 
with  randomly chosen values for the parameters 𝑤 and 𝑏, the goal is to adjust them such that the  values 
that reduce the cost function are found.  The sign of the gradient indicates the direction in which we must 
update to reduce the cost function. One must move in a direction opposite to that of the gradient.

• For each iteration of the parameters, one has

j
𝑤 = 𝑤 − 𝛼.

𝜕𝐶
𝜕𝑤

𝑏 = 𝑏 − 𝛼.
𝜕𝐶
𝜕𝑏

Eqn. 3.11 ,

where 𝛼 is the learning rate (step size).

• For each iteration, one must recalculate the cost function to check that it is decreasing. One can stop the 
gradient descent process when the cost function is at its minimum.  Note that in Eqn. (3.9), one must find 
the gradients of the cost function by the chain rule of differentiation.
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Gradient descend and learning rate



• The predictive model we have been discussing can be written as
𝑦 = 𝑤𝑥 + 𝑏, Eqn. (3.12)

• Where 𝑦 is the sales, x the advertising amount, and 𝑏 the bias.

• The mean square error (MSE) can therefore be computed from 

𝑀𝑆𝐸 = 𝑓 𝑤, 𝑏 =
1
𝑁
@
.,)

*

𝑦. − 𝑤𝑥. + 𝑏 ! Eqn. (3.13)

• We can optimize our choices for 𝑤 and 𝑏 by taking the derivative of the 𝑀𝑆𝐸 function above to get 

𝑓! 𝑤, 𝑏 =
"#
"$
"#
"%

=
&
'
∑(−2𝑥( 𝑦( − 𝑤𝑥( + 𝑏
&
'
∑(−2 𝑦( − 𝑤𝑥( + 𝑏

Eqn. (3.14)

• The sign of the derivative (gradient) tells us which direction we should update to reduce the cost function. 
We move in direction opposite to that of the gradient. Size of the update is controlled by the learning rate.
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Cost Function for Linear Regression 
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• To train the model, we iteratively loop through the 
dataset, each time updating the weight “𝑤” and the 
bias “𝑏” in the direction indicated by the sign of 
the slope of the cost function. Training is 
accomplished when the error (cost) function is at 
its minimum or when the training iterations fail to 
reduce the cost function.

• At the beginning of the training, the weight 𝑤 and 
bias 𝑏 are initialized to some random values 
(default values). The hyper parameters, which in 
this case are the learning rate and the number of 
iterations, must also be set at the beginning of 
training.

• One way to track progress is to plot the 𝑀𝑆𝐸 as a 
function of training iterations (see sketch on right).

Training of the Linear Regression model 



• If the computer companies we discussed earlier, advertised in several places: radio, TV, and web, then the 
model must be extended to all relevant variables; the sales function is now written as

𝑦 = 𝑤) 𝑟𝑎𝑑𝑖𝑜 + 𝑤! 𝑇𝑉 + 𝑤1 𝑤𝑒𝑏 + b Eqn. (3.15).

• For convenience, we set the bias term to 𝑏 = 0. The cost function is therefore 

𝑓 = 𝑀𝑆𝐸 = )
!*
∑.,)* 𝑦. − 𝑤)𝑥). + 𝑤!𝑥!. + 𝑤1𝑥1. ! Eqn. (3.16).

• We have divided by 2N so that when we take the derivative, the 2 from the differentiation cancels the 2 
from the 2𝑁.

• The gradient of Eqn. (3.16) is a vector of partial derivatives  given by 

23
24'
23
24(
23
24)

=

)
*
−𝑥). 𝑦. − 𝑤)𝑥). + 𝑤!𝑥!. + 𝑤1𝑥!.

)
*
−𝑥!. 𝑦. − 𝑤)𝑥). + 𝑤!𝑥!. + 𝑤1𝑥1.

)
*
−𝑥1. 𝑦. − 𝑤)𝑥). + 𝑤!𝑥!. + 𝑤1𝑥1.

Eqn. (3.17)
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Multivariate Regression 
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• Undergraduate admissions offices at some universities 
have a tool that does a rough-cut admission.

• Using only GPA and standardized test scores (SAT 
scores),  automated admission tools can narrow down 
the applicant pool so that the human  admissions 
committees can focus on reading references and 
essays for only a few students.

• Input to the automated admission tool is continuous 
but the output is binary. Clearly the  linear regression 
method we have studied will  not work here.  
However, transforming the input data so that the 
output is binary is an option.  This is binary 
classification and a type of approach called logistic 
regression is the preferred method.

Regression on data sets with binary outcomes



• Sometimes the models we want should give discrete and not continuous outputs.  Examples of these kind 
include questions like:

– Will a person repay a loan or not (yes/no), given certain things you know about them?
– Will it snow tomorrow, given that today is sunny and yesterday was sunny?
– Will I get an “A” in this class given that I have done all the HW and passed all the quizzes with scores of over 80%?

• The task we have at hand is to analyze data that pertains to questions like those above. The output is 
clearly binary (yes/no). These types of situations are important in machine learning. 

• We need to have a conditional distribution of the output, given the input variables: in another words, we 
seek 𝑃 𝑌 𝑋 .

• To link the input variable to the probability, we introduce a quantity called odds: this is the ratio of the 
probability of an event happening to the probability that it will not happen;

Odds = 5
)65 Eqn. (3.18).
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Logistic Regression: Conditional Probabilities 



• Probabilities are distributed between 0 and 1 but input variables are generally not. We cannot link the 
odds ratio directly to a linear combination of independent variables because it does not make sense.

• The best strategy is to consider the natural logarithm of the odds ratio and link that to the linear 
combination of input variables, thus

𝑙𝑛 )(+)
&-)(+)

= ∑(./0 𝑎(𝑥( Eqn. (3.19);

• The simplest case of this linear combination could be 
𝑎/ + 𝑎&𝑥& = ∑(./& 𝑎(𝑥( Eqn. (3.20)

• We have set 𝑥- = 1 to permit adding a bias term 𝑎-.  The left-hand side of Eqn. (3.19) is called the logit 
of 𝑝(𝑥), which is where the term logistic regression comes from.

• Eqn. (3.19) can be rewritten (using the relationship between exponentials and natural logarithms) as
5(#)
)65(#)

= exp ∑.,-7 𝑎.𝑥. = ∏.,-
7 exp 𝑎.𝑥. Eqn. (3.21).
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Odds Ratio and its Relationship to Logit



• Eqn. (3.21) suggests that logistic models are multiplicative in their inputs;  the value of exp(𝑎.) tells us 
how the odds of the output being true increase or decrease as 𝑥. increases by one unit.

• For example: if 𝑎. = 0.693, then exp 0.693 = 2. If 𝑥. is a numerical variable such as someone’s weight 
in pounds, then every increase in weight by one pound, doubles the odds of that person being overweight 
(as the output), if other things remain the same. 

• One can invert Eqn. (3.21) as follows:

𝑝 𝑦 = 89: %
);89: %

, where 𝑦 = ∑.,-7 𝑎.𝑥. Eqn. (3.22).

• Finally, we have a function linking the real number line to the probability interval between 0 and 1, 0,1 .

• By the chain rule of differentiation, the derivative of 𝑝 𝑦 in  Eqn. (3.22) is 
𝑝<(𝑦) = 𝑝(𝑦) 1 − 𝑝(𝑦) Eqn. (3.24).
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Logistic Regression 



• If required, the gradient of 𝑝(. ) with respect to the coefficients 𝑎. can be obtained as
25
2=
= 𝑝(𝑦) 1 − 𝑝(𝑦) 2%

2=
Eqn. (3.25).

• A solution to a logistic regression problem is therefore the set of parameters 𝑎. that maximizes the 
likelihood of the data 𝑥..

• One can express the solution as a product of the predicted probabilities of the 𝑘 individual observations, 
thus

ℒ 𝑥 𝑝 = ∏.,)|#*,)
7 𝑝(𝑥.)∏.,)|#*,-

7 1 − 𝑝(𝑥.) Eqn. (3.26).
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Solution of a Logistic Regression Problem



• Input to the logistic model is a vector of features, 𝑥., and the output is a class 𝑦..  The probability of a 
class has probability  𝑝 for 𝑦. = 1 and 1 − 𝑝 for 𝑦. = 0. We define the likelihood as 

ℒ 𝑏?, 𝑏 ={
.,)

7

𝑝(𝑥)%* 1 − 𝑝(𝑥) )6%* Eqn. 3.27 ;

• The log-likelihood is then obtained by taking the natural log of Eqn. (3.27) to give

ℓ(𝑏+, 𝑏) = '
"#$

,

𝑦" log 𝑝(𝑥") + 1 − 𝑦" log 1 − 𝑝(𝑥")

= '
"#$

,

𝑦" log 𝑝(𝑥") − log 1 − 𝑝(𝑥") + log 1 − 𝑝(𝑥")

= '
"#$

,

𝑦" log
𝑝(𝑥")

1 − 𝑝(𝑥")
+ log 1 − 𝑝(𝑥")

=

Eqn. (3.28)
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Likelihood function for logistic regression 



• The log-likelihood equation from the the previous slide is

ℓ 𝑏 =@
.,)

7

𝑦. 𝑏- + 𝑏.𝑥. −@
.,)

7

log 1 + exp 𝑏- + 𝑏.𝑥. Eqn. 3.29 .

• To maximize Eqn. (3.29), we need to differentiate with respect to some 𝑏. and set it to zero, thus

𝜕ℓ
𝜕𝑏.

=@
.,)

7

𝑦.𝑥. −@
.,)

7
exp 𝑏- + 𝑏.𝑥.

1 + exp 𝑏. + 𝑏.𝑥.
𝑥. =@

.,)

7

𝑦. − 𝑝(𝑥.: 𝑏-, 𝑏. )𝑥. Eqn. 3.30 .

• Eqn. (3.30) can only be solved numerically by iteration to find the values of 𝑏-, 𝑏. that make the log-
likelihood a maximum.
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Maximizing the likelihood



• Once the coefficients, 𝑏-, 𝑏. of the probability function of the logistic have been determined through a 
learning process, given a data set,  one is ready to predict a new output for a given input, 𝑥. through 

𝑝 𝑥 =
exp 𝑏- + 𝑏.𝑥.

1 + exp 𝑏- + 𝑏.𝑥.
=

1
1 + exp − 𝑏- + 𝑏)𝑥.

Eqn. 3.31 .

• The associated class for input  𝑥., is given according to 

𝑓 𝑥 = *0 𝑝 𝑥 ≤ 0.5
1 𝑝(𝑥) > 0.5 Eqn. (3.32).

• One could also focus attention on the logit 𝑝 𝑥 = ∑.,-7 𝑏.𝑥. Eqn. (3.33), which leads to

𝑓 𝑥 = *0 𝑏.𝑥. ≤ 0
1 𝑏.𝑥. > 0

• The decision boundary is then:  𝑏- + 𝑏)𝑥) +⋯𝑏7𝑥7 = 0, which is a point for 𝑘 = 1, and a line for 𝑘 = 2,
and a 𝑘 − 1 dimensional subspace.
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• Reviewed the concept of learning
– Learning in machines
– Classification

• Introduced regression in machine learning 
– Linear models in learning
– Logistic regression: mapping  continuous input variables to probability 
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